Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.059
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
J Mech Behav Biomed Mater ; 154: 106533, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38598918

RESUMEN

The present work aims to develop a production method of pre-sintered zirconia-toughened-alumina (ZTA) composite blocks for machining in a computer-aided design and computer-aided manufacturing (CAD-CAM) system. The ZTA composite comprised of 80% Al2O3 and 20% ZrO2 was synthesized, uniaxially and isostatically pressed to generate machinable CAD-CAM blocks. Fourteen green-body blocks were prepared and pre-sintered at 1000 °C. After cooling and holder gluing, a stereolithography (STL) file was designed and uploaded to manufacture disk-shaped specimens projected to comply with ISO 6872:2015. Seventy specimens were produced through machining of the blocks, samples were sintered at 1600 °C and two-sided polished. Half of the samples were subjected to accelerated autoclave hydrothermal aging (20h at 134 °C and 2.2 bar). Immediate and aged samples were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Optical and mechanical properties were assessed by reflectance tests and by biaxial flexural strength test, Vickers indentation and fracture toughness, respectively. Samples produced by machining presented high density and smooth surfaces at SEM evaluation with few microstructural defects. XRD evaluation depicted characteristic peaks of alpha alumina and tetragonal zirconia and autoclave aging had no effect on the crystalline spectra of the composite. Optical and mechanical evaluations demonstrated a high masking ability for the composite and a characteristic strength of 464 MPa and Weibull modulus of 17, with no significant alterations after aging. The milled composite exhibited a hardness of 17.61 GPa and fracture toughness of 5.63 MPa m1/2, which remained unaltered after aging. The synthesis of ZTA blocks for CAD-CAM was successful and allowed for the milling of disk-shaped specimens using the grinding method of the CAD-CAM system. ZTA composite properties were unaffected by hydrothermal autoclave aging and present a promising alternative for the manufacture of infrastructures of fixed dental prostheses.


Asunto(s)
Óxido de Aluminio , Cerámica , Ensayo de Materiales , Óxido de Aluminio/química , Cerámica/química , Propiedades de Superficie , Circonio/química , Diseño Asistido por Computadora , Materiales Dentales
2.
Eur J Med Res ; 29(1): 254, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659074

RESUMEN

BACKGROUND: Yttrium-stabilized zirconia (YSZ) and alumina are the most commonly used dental esthetic crown materials. This study aimed to provide detailed information on the comparison between yttrium-stabilized zirconia (YSZ) and alumina, the two materials most often used for esthetic crowns in dentistry. METHODOLOGY: The ground-state energy of the materials was calculated using the Cambridge Serial Total Energy Package (CASTEP) code, which employs a first-principles method based on density functional theory (DFT). The electronic exchange-correlation energy was evaluated using the generalized gradient approximation (GGA) within the Perdew (Burke) Ernzerhof scheme. RESULTS: Optimization of the geometries and investigation of the optical properties, dynamic stability, band structures, refractive indices, and mechanical properties of these materials contribute to a holistic understanding of these materials. Geometric optimization of YSZ provides important insights into its dynamic stability based on observations of its crystal structure and polyhedral geometry, which show stable configurations. Alumina exhibits a distinctive charge, kinetic, and potential (CKP) geometry, which contributes to its interesting structural framework and molecular-level stability. The optical properties of alumina were evaluated using pseudo-atomic computations, demonstrating its responsiveness to external stimuli. The refractive indices, reflectance, and dielectric functions indicate that the transmission of light by alumina depends on numerous factors that are essential for the optical performance of alumina as a material for esthetic crowns. The band structures of both the materials were explored, and the band gap of alumina was determined to be 5.853 eV. In addition, the band structure describes electronic transitions that influence the conductivity and optical properties of a material. The stability of alumina can be deduced from its bandgap, an essential property that determines its use as a dental material. Refractive indices are vital optical properties of esthetic crown materials. Therefore, the ability to understand their refractive-index graphs explains their transparency and color distortion through how the material responds to light..The regulated absorption characteristics exhibited by YSZ render it a highly attractive option for the development of esthetic crowns, as it guarantees minimal color distortion. CONCLUSION: The acceptability of materials for esthetic crowns is strongly determined by mechanical properties such as elastic stiffness constants, Young's modulus, and shear modulus. YSZ is a highly durable material for dental applications, owing to its superior mechanical strength.


Asunto(s)
Óxido de Aluminio , Coronas , Itrio , Circonio , Itrio/química , Circonio/química , Óxido de Aluminio/química , Humanos , Teoría Cuántica
3.
Bioresour Technol ; 398: 130517, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38437961

RESUMEN

The utilization of lignin, an abundant and renewable bio-aromatic source, is of significant importance. In this study, lignin oxidation was examined at different temperatures with zirconium oxide (ZrO2)-supported nickel (Ni), cobalt (Co) and bimetallic Ni-Co metal catalysts under different solvents and oxygen pressure. Non-catalytic oxidation reaction produced maximum bio-oil (35.3 wt%), while catalytic oxidation significantly increased the bio-oil yield. The bimetallic catalyst Ni-Co/ZrO2 produced the highest bio-oil yield (67.4 wt%) compared to the monometallic catalyst Ni/ZrO2 (59.3 wt%) and Co/ZrO2 (54.0 wt%). The selectively higher percentage of vanillin, 2-methoxy phenol, acetovanillone, acetosyringone and vanillic acid compounds are found in the catalytic bio-oil. Moreover, it has been observed that the bimetallic Co-Ni/ZrO2 produced a higher amount of vanillin (43.7% and 13.30 wt%) compound. These results demonstrate that the bimetallic Ni-Co/ZrO2 catalyst promotes the selective cleavage of the ether ß-O-4 bond in lignin, leading to a higher yield of phenolic monomer compounds.


Asunto(s)
Benzaldehídos , Cobalto , Níquel , Óxidos , Aceites de Plantas , Polifenoles , Circonio , Lignina , Fenoles
4.
Anal Sci ; 40(4): 701-707, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38316711

RESUMEN

In this work, a novel zirconium phosphonate (ZrPR1R2) was prepared by decorating both the aminoethoxy- group (R1) and the carboxypropyl- group (R2) on the zirconium phosphate layers in order to manipulate further the immobilization of the peroxidase (POD), and an antioxidant biosensor with higher sensitivity was constructed by dropping the POD/ZrPR1R2 composite onto the glassy carbon electrode surface. The activity of the POD/ZrPR1R2 composite was detected by Uv-vis spectra. The direct electrochemical behavior, the electrocatalytic response to dissolved oxygen and hydrogen peroxide, as well as the ability to detect total antioxidant capacity in tea sample were investigated by the methods of cyclic voltammetry. The results indicated that the immobilization of POD in ZrPR1R2 nanosheets matrix enhanced the enzymatic activity, and achieved the fast and direct electron transfer between POD and glassy carbon electrode. Moreover, the POD/ZrPR1R2 composite modified electrode show the electrocatalytic response to hydrogen peroxide in the linear range of 8.8×10-8 to 8.8×10-7 mol L-1, with the detection limit of 3.3×10-8 mol L-1. Attributing to the sensitive response to dissolved oxygen, the total antioxidant capacity can be detected directly in the real tea water by this POD/ZrPR1R2 composite modified electrode.


Asunto(s)
Antioxidantes , Técnicas Biosensibles , Peroxidasa , Peróxido de Hidrógeno/análisis , Circonio , Carbono , Electrodos , Peroxidasas , Oxígeno , , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos
5.
Water Res ; 252: 121219, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38309067

RESUMEN

Exploring and developing promising biomass composite membranes for the water purification and waste resource utilization is of great significance. The modification of biomass has always been a focus of research in its resource utilization. In this study, we successfully prepare a functional composite membrane, activated graphene oxide/seaweed residue-zirconium dioxide (GOSRZ), with fluoride removal, uranium extraction, and antibacterial activity by biomimetic mineralization of zirconium dioxide nanoparticles (ZrO2 NPs) on seaweed residue (SR) grafted with oxidized graphene (GO). The GOSRZ membrane exhibits highly efficient and specific adsorption of fluoride. For the fluoride concentrations in the range of 100-400 mg/L in water, the removal efficiency can reach over 99 %, even in the presence of interfering ions. Satisfactory extraction rates are also achieved for uranium by the GOSRZ membrane. Additionally, the antibacterial performance studies show that this composite membrane efficiently removes Escherichia coli (E. coli) and Methicillin-resistant Staphylococcus aureus (MRSA). The high adsorption of F- and U(VI) to the composite membrane is ascribed to the ionic exchange and coordination interactions, and its antibacterial activity is caused by the destruction of bacterial cell structure. The sustainability of the biomass composite membranes is further evaluated using the Sustainability Footprint method. This study provides a simple preparation method of biomass composite membrane, expands the water purification treatment technology, and offers valuable guidance for the resource utilization of seaweed waste and the removal of pollutants in wastewater.


Asunto(s)
Grafito , Staphylococcus aureus Resistente a Meticilina , Uranio , Purificación del Agua , Circonio , Uranio/análisis , Flúor , Escherichia coli , Fluoruros , Biomimética , Purificación del Agua/métodos , Adsorción , Antibacterianos
6.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38396933

RESUMEN

Bioinert materials such as the zirconium dioxide and aluminum oxide are widely used in surgery and dentistry due to the absence of cytotoxicity of the materials in relation to the surrounding cells of the body. However, little attention has been paid to the study of metabolic processes occurring at the implant-cell interface. The metabolic activity of mouse 3T3 fibroblasts incubated on yttrium-stabilized zirconium ceramics cured with aluminum oxide (ATZ) and stabilized zirconium ceramics (Y-TZP) was analyzed based on the ratio of the free/bound forms of cofactors NAD(P)H and FAD obtained using two-photon microscopy. The results show that fibroblasts incubated on ceramics demonstrate a shift towards the free form of NAD(P)H, which is observed during the glycolysis process, which, according to our assumptions, is related to the porosity of the surface of ceramic structures. Consequently, despite the high viability and good proliferation of fibroblasts assessed using an MTT test and a scanning electron microscope, the cells are in a state of hypoxia during incubation on ceramic structures. The FLIM results obtained in this work can be used as additional information for scientists who are interested in manufacturing osteoimplants.


Asunto(s)
Interfase Hueso-Implante , NAD , Circonio , Animales , Ratones , Óxido de Aluminio , Cerámica/química , Fibroblastos/metabolismo , Ensayo de Materiales , NAD/metabolismo , Propiedades de Superficie , Itrio , Circonio/química
7.
Dent Mater J ; 43(2): 216-226, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38417860

RESUMEN

This study aimed to investigate the effects of sandblasting on the physical properties and bond strength of two types of translucent zirconia: niobium-oxide-containing yttria-stabilized tetragonal zirconia polycrystals ((Y, Nb)-TZP) and 5 mol% yttria-partially stabilized zirconia (5Y-PSZ). Fully sintered disc specimens were either sandblasted with 125 µm alumina particles or left as-sintered. Surface roughness, crystal phase compositions, and surface morphology were explored. Biaxial flexural strength (n=10) and shear bond strength (SBS) (n=12) were evaluated, including thermocycling conditions. Results indicated a decrease in flexural strength of 5Y-PSZ from 601 to 303 MPa upon sandblasting, while (Y, Nb)-TZP improved from 458 to 544 MPa. Both materials significantly increased SBS after sandblasting (p<0.001). After thermocycling, (Y, Nb)-TZP maintained superior SBS (14.3 MPa) compared to 5Y-PSZ (11.3 MPa) (p<0.001). The study concludes that (Y, Nb)-TZP is preferable for sandblasting applications, particularly for achieving durable bonding without compromising flexural strength.


Asunto(s)
Materiales Dentales , Niobio , Óxidos , Materiales Dentales/química , Ensayo de Materiales , Propiedades de Superficie , Circonio/química , Itrio/química , Óxido de Aluminio , Resistencia al Corte
8.
J Prosthet Dent ; 131(3): 530.e1-530.e11, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38262839

RESUMEN

STATEMENT OF PROBLEM: The influence of different thicknesses, translucencies, and fabrication methods on the spectrophotometric and topographical properties of zirconia-reinforced lithium silicate glass-ceramics (ZLSs) for dental restorations remains unclear. PURPOSE: The purpose of this in vitro study was to investigate the effect of thicknesses, translucencies, and fabrication methods on the color stability, translucency parameter, opalescence parameter, whiteness stability, transmitted irradiance, light transmittance, opacity, gloss, and roughness of ZLSs exposed to coffee staining and bleaching treatments. MATERIAL AND METHODS: Two pressable ZLSs (VITA AMBRIA, VA and Celtra Press, CP) and 2 machinable ZLSs (VITA Suprinity, VS and Celtra Duo, CD) were examined at high translucency (HT) and low translucency (LT) levels in 2 thicknesses (n=160). The specimens were evaluated at baseline, after coffee staining, and after bleaching. The color stability (ΔE2000), translucency parameter (TP), opalescence parameter (OP), whiteness index (WID), and whiteness stability (ΔWID) were measured with a spectrophotometer. Transmitted irradiance (It), light transmission (T), and opacity (O) were obtained from a light-polymerizing unit and a polymerization light collection device. Roughness stability (ΔSa%) was determined with an optical profilometer, and gloss stability (ΔGU%) was recorded with a gloss meter. Data of ΔCIE2000, ΔWID, ΔSa%, and ΔGU% were analyzed by 4-way ANOVA, and data of the TP, OP, WID, It, T, and O were analyzed by repeated 4-way ANOVA (α=.05). RESULTS: VS-HT exceeded the ΔCIE2000 acceptability threshold after coffee staining and bleaching protocols. Pressable ZLSs exhibited greater color stability than machinable ZLSs. The 1-mm-thick VA, CP, and CD materials exceeded the ΔWID perceptibility threshold after bleaching. The highest TP and OP was displayed by the 1-mm-thick CP after bleaching. ΔGU increased after water storage and decreased after coffee staining and bleaching. ΔSa% significantly increased after bleaching (P<.05). CONCLUSIONS: The color stability and other spectrophotometric properties of ZLSs depended on material thickness. The effects of ZLS fabrication methods and translucency levels on their measured properties were inconsistent. Subjecting 1-mm-thick ZLS materials to acidic media adversely impacted their stainability and surface texture.


Asunto(s)
Café , Litio , Circonio , Silicatos , Coloración y Etiquetado , Cerámica/uso terapéutico
9.
J Prosthet Dent ; 131(1): 100.e1-100.e5, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37867016

RESUMEN

STATEMENT OF PROBLEM: The necessity of roughening the intaglio surface of zirconia crowns to achieve adequate retention is unclear. PURPOSE: The purpose of this clinical simulation study was to evaluate the retention of airborne-particle-abraded and nonabraded monolithic zirconia crowns using 3 different cement types. MATERIAL AND METHODS: Extracted human molars were used and prepared with a 10-degree taper. Impressions were made of the prepared teeth with a polyvinyl siloxane (PVS) material, and dies were made with Type 4 gypsum. Each die was scanned with a NobelProcera 1G Scanner, and the standard tessellation language (STL) files were transferred electronically to the Nobel Biocare production site, where a bar was added virtually on top of each crown and parameters were set for milling. Seventy-two Procera zirconia crowns were generated, of which half were airborne-particle abraded on the intaglio surface with 50-µm alumina particles at 400 to 500 kPa for 15 seconds. The other 36 received no intaglio treatment other than cleaning. Both groups of 36 crowns were divided into 3 subgroups of 12 specimens. The area of each preparation was calculated using a computer-aided design software program. The specimens were distributed to attain similar mean surface areas among the cementation groups. The crowns were cemented onto the specimen with a controlled force of 196 N. The 3 cements used were self-adhesive, modified resin RelyX Unicem Aplicap, resin-modified glass ionomer RelyX Luting, and a composite resin, Panavia F2.0 with ED Primer A & B. All specimens were thermocycled (5 °C to 55 °C) for 5000 cycles and then removed axially with a universal testing machine (Instron Model 5585H) at a crosshead speed of 0.5 mm/min. The removal force was recorded, and stress of dislodgement was calculated for each crown. A 2-way analysis of variance was used for statistical analyses. The type of failure was analyzed with the chi-squared test of association for independent samples (α=.05 for all tests). RESULTS: The mean dislodging force for crowns with airborne-particle abraded intaglio was 5.4 MPa, which was statistically greater than the mean of 3.2 MPa for nonabraded specimens (P<.001). No significant differences related to the dislodging stresses were detected among the 3 cements (P=.109). The mode of failure was similar whether abraded or not, with 50% of specimens retaining cement in the crown after separation. CONCLUSIONS: Alumina airborne-particle abrasion of the intaglio of zirconia to create surface roughness is beneficial in retaining the crowns, regardless of the cement type. The nonabraded crowns demonstrated significantly lower retentive stress with crown removal. The principal mode of failure was similar whether the zirconia intaglio was airborne-particle abraded or not. The most common mode of failure (>50% of specimens) was at least three-fourths of the cement remaining within the crown.


Asunto(s)
Óxido de Aluminio , Materiales Dentales , Humanos , Cementos Dentales , Coronas , Cementos de Resina , Circonio , Cementos de Ionómero Vítreo , Ensayo de Materiales , Análisis del Estrés Dental , Propiedades de Superficie
10.
Int Orthod ; 22(1): 100822, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37992472

RESUMEN

PURPOSE: The objective of this study was to compare the shear bond strengths of orthodontic brackets bonded to translucent dental zirconia samples which are anatomically accurate and treated with various surface treatments. METHODS: This in vitro study included 156 samples from 3 brands of high-translucent zirconia split into a control group and 4 surface treatment groups: 9.6% hydrofluoric acid etching, 50-micron aluminium oxide particle air abrasion, and 30-micron tribochemical silica coating (TBS) particle air abrasion with and without silane application. After surface treatment, all groups were primed with a 10-MDP primer and bonded to metal orthodontic brackets. Shear bond strength (SBS) was tested and results were compared between all groups. Data analysis consisted of a balanced two-factor factorial ANOVA, a Shapiro-Wilks test, and a non-parametric permutation test. The significance level was set at 0.05. RESULTS: Among all surface treatments, aluminium oxide particle abrasion produced significantly higher SBS (P≤0.002). Lava™ Plus zirconia samples had significantly higher SBS than Cercon® samples (P<0.0001). TBS surface treatment produced significantly higher SBS on Lava™ Plus samples than it did on the other zirconia brands (P=0.032). CONCLUSIONS: This study indicated that mechanical abrasion using aluminium oxide in combination with a 10-MDP primer creates a higher SBS to high-translucent zirconia than the bond created by tribochemical silica coating. Also, there was no significant difference in ARI regardless of zirconia brand or surface preparation.


Asunto(s)
Recubrimiento Dental Adhesivo , Metacrilatos , Soportes Ortodóncicos , Circonio , Humanos , Cementos de Resina/química , Abrasión Dental por Aire , Propiedades de Superficie , Resistencia al Corte , Dióxido de Silicio/química , Óxido de Aluminio/química , Ensayo de Materiales , Análisis del Estrés Dental
11.
Clin Oral Investig ; 27(12): 7833-7840, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37989965

RESUMEN

OBJECTIVES: To assess the effect of glass-ceramic coated zirconia versus alumina air-abraded zirconia on the shear bond strength (SBS) of resin cement and investigate the residual stresses present on both mechanically pre-treated surfaces. MATERIALS AND METHODS: A total of 180 zirconia disks, with diameters of 10 mm and 5 mm, were divided into two groups: DCMhotbond glass-ceramic coated, followed by hydrofluoric acid etching (DCM), and alumina air-abraded (AB). All mechanically pre-treated disks were conditioned with G-Multi Primer and bonded using G-Cem Linkforce Cement. Ninety specimens were immersed in distilled water for 24 h and subsequently allocated into three groups based on aging conditions (n = 15/subgroups): immediate testing, 5000 thermal cycles, and 10,000 thermal cycles. Then, the shear bond strength was assessed, and the obtained data were subjected to analysis using a two-way ANOVA, followed by a one-way ANOVA and Tukey's HSD post hoc test (α = 0.05). The residual stresses present on both mechanically pre-treated surfaces were examined using X-ray diffraction analysis. RESULTS: The mean SBS values of the DCM and AB groups showed no significant difference under each aging condition. The SBS of DCM groups was not affected by thermal cycles, whereas the SBS of AB groups exhibited a significant decrease following thermal cycles. Glass-ceramic coated surfaces exhibited higher compressive stresses than alumina air-abrasion. CONCLUSIONS: The DCMhotbond glass-ceramic coated zirconia showed comparable bond strength to the alumina air-abrasion technique. CLINICAL RELEVANCE: The DCMhotbond glass-ceramic coating technique is a promising alternative for zirconia surface pre-treatment. However, further investigations are needed before suggesting its clinical use.


Asunto(s)
Recubrimiento Dental Adhesivo , Óxido de Aluminio/química , Propiedades de Superficie , Cerámica/química , Cementos de Resina/química , Circonio/química , Resistencia al Corte , Ensayo de Materiales , Análisis del Estrés Dental
12.
J Mech Behav Biomed Mater ; 148: 106192, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37865017

RESUMEN

The aim of this in vitro study was to evaluate the surface roughness, translucency, fatigue failure load (FFL), and number of cycles for fatigue failure (CFF) of a recently released lithia-based material called advanced lithium disilicate and three other ceramics indicated for monolithic restorations. First, ALD (advanced lithium disilicate, CEREC Tessera, Dentsply Sirona), LD (lithium disilicate, IPS e. max CAD, Ivoclar), LS (lithium silicate-disilicate, Suprinity, Vita Zahnfabrik), and 4Y-PSZ (Yttria-stabilized zirconia, IPS e.max ZirCAD MT, Ivoclar) discs (n = 15, Ø = 10 mm and thickness = 1.0 mm) were fabricated from CAD/CAM blocks/discs, A2 shade. The discs were sintered/crystallized and subsequently analyzed by a rugosimeter (Mitutoyo SJ-410) to determine Ra and Rz surface roughness parameters. Next, they were evaluated to determine the translucency parameter (TP) using a bench-top spectrophotometer (SP60, EX-Rite). The discs were subsequently cemented to glass fiber epoxy resin discs, and the specimens were tested under cyclic loading (Step-test), immersed in distilled water at a frequency of 20 Hz, with an initial cyclic load of 200 N for 5,000 cycles and increments of 50 N every 10,000 cycles until failure. Fatigue failure load (FFL) and number of cycles for fatigue failure (CFF) were recorded for subsequent Kaplan Meier analysis, with post-hoc Mantel-Cox and Weibull analysis (α = 0.05). Complementary fractographic, topographic and energy dispersive spectroscopy analyses (EDS) were performed. 4Y-PSZ showed higher survival (p < 0.05), with higher FFL and CFF (1077 N; 180,333 cycles), followed by LD (980 N; 161,000 cycles), LS (937 N; 152,333 cycles) and ALD (910 N; 147,000 cycles). No differences were observed between the tested groups regarding Weibull modulus. ALD presented TP (28.14) equal to DL (28.27) and higher than LS (25.51). All lithia-based materials had higher translucency than 4Y-PSZ (TP = 8.62) (p < 0.05). ALD appears to have a similar elemental composition to LD and LSD for oxygen and silicon. ALD and LSD have a similar zirconium content. Fractures originated on the cemented surface of the ceramic discs. Lithia-based ceramics showed lower surface roughness, with ALD (Ra = 0.04 µm; Rz = 0.66 µm) showing the lowest values (p < 0.05). Despite showing lower FFL when compared to LD and 4Y-PSZ, ALD has compatible translucency and mechanical fatigue performance with its indication for fabricating monolithic, anterior and posterior adhesively cemented single-unit restorations. However, further studies are needed to substantiate its clinical performance.


Asunto(s)
Cerámica , Porcelana Dental , Cerámica/química , Propiedades de Superficie , Ensayo de Materiales , Análisis del Estrés Dental , Circonio/química , Diseño Asistido por Computadora
13.
Int J Periodontics Restorative Dent ; (7): s65-s77, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37879051

RESUMEN

PURPOSE: To investigate the effects of airborne-particle abrasion and nanosilica (nano-Si) infiltration treatment on the surface characteristics of dental zirconia. MATERIALS AND METHODS: A total of 15 unsintered zirconia ceramic green bodies (10 × 10 × 3 mm) were divided into three groups (n = 5): Group C, no treatment after sintering; Group S, airborne-particle abrasion with 50-µm aluminum oxide particles after sintering; and Group N, infiltration of nano-Si followed by sintering and hydrofluoric acid (HF) etching. The zirconia disks' surface roughness was analyzed by atomic force microscopy (AFM). The surface morphology of the specimens was analyzed using scanning electron microscopy (SEM), and the chemical composition was analyzed by energy-dispersive x-ray (EDX). Data were statistically analyzed by the Kruskal-Wallis test (P < .05). RESULTS: Zirconia surface treatments by infiltration of nano-Si, sintering, and HF etching showed multiple changes in the surface features. The surface roughness of Groups C, S, and N were 0.88 ± 0.07 µm, 1.26 ± 0.10 µm, and 1.69 ± 0.15 µm, respectively. The surface roughness of Group N was significantly higher than that of Groups C and S (P < .05). EDX analysis showed peaks that corresponded to silica (Si) after infiltration with colloidal Si that disappeared following acid etching. CONCLUSIONS: Infiltrating nano-Si increases the surface roughness of zirconia. The formation of retentive nanopores on the surface potentially improves the zirconia-resin cement bonding strengths.


Asunto(s)
Recubrimiento Dental Adhesivo , Humanos , Propiedades de Superficie , Cerámica/química , Circonio/química , Cementos de Resina/química , Óxido de Aluminio/química , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Grabado Dental
14.
Inorg Chem ; 62(50): 20745-20753, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37643591

RESUMEN

A novel photoactivatable Pt(IV) diazido anticancer agent, Pt-succ-DFO, bearing a pendant deferoxamine (DFO) siderophore for radiometal chelation, has been synthesized for the study of its in vivo behavior with radionuclide imaging. Pt-succ-DFO complexation of Fe(III) and Ga(III) ions yielded new heterobimetallic complexes that maintain the photoactivation properties and photocytotoxicity of the parent Pt complex in human cancer cell lines. Radiolabeled Pt-succ-DFO-68Ga (t1/2 = 68 min, positron emitter) was readily prepared under mild conditions and was stable in the dark upon incubation with human serum. PET imaging of Pt-succ-DFO-68Ga in healthy mice revealed a promising biodistribution profile with rapid renal excretion and limited organ accumulation, implying that little off-target uptake is expected for this class of agents. Overall, this research provides the first in vivo imaging study of the whole-body distribution of a photoactivatable Pt(IV) azido anticancer complex and illustrates the potential of radionuclide imaging as a tool for the preclinical development of novel light-activated agents.


Asunto(s)
Compuestos Férricos , Radioisótopos de Galio , Animales , Humanos , Ratones , Distribución Tisular , Medicina de Precisión , Tomografía de Emisión de Positrones , Fototerapia , Línea Celular Tumoral , Circonio
15.
J Prosthet Dent ; 130(3): 392.e1-392.e9, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37516645

RESUMEN

STATEMENT OF PROBLEM: The color of monolithic zirconia restorations is obtained by presintering or postsintering coloring techniques. However, studies on the differences in surface characteristics and their influence on color stability are lacking. PURPOSE: The purpose of this in vitro study was to evaluate the influence of shading and staining techniques for a zirconia ceramic on the surface characteristics and colorimetric parameters (color difference, translucency, and whiteness index) after exposure to coffee or red wine and then polishing. MATERIAL AND METHODS: Ceramic disks (N=30; Ø10×1mm) were allocated into 3 groups: preshaded-shaded by the manufacturer (IPS e.max ZirCAD MT, shade A2); manually shaded-unshaded zirconia (IPS e.max ZirCAD MT, bleaching shade-BL) colored by the brushing technique, before sintering; stained-unshaded zirconia (IPS e.max ZirCAD MT BL) colored by the staining technique, after sintering. Spectrophotometric color assessments ensured the same initial perceived color (Vita Classical A2) for specimens included in the study (∆E00<1.77 acceptability threshold). Surface characteristics were assessed by scanning electron microscopy and atomic force microscopy. The specimens were immersed in coffee (n=5) or red wine (n=5) for 12 and 24 days and subsequently polished. The data were statistically and descriptively analyzed for color differences (∆E00), translucency parameters (TP00), and whiteness indexes for dentistry (WID), considering acceptability and perceptibility thresholds. RESULTS: The shaded groups found an irregular ceramic surface with uniformly sized zirconia crystals. The stained group found a glass-covered smoother surface. Significant alterations in color parameters (∆E00, TP00, WID) were observed with immersion in pigmenting beverages (P<.001) both after 12 days, and after 24 days. The shaded specimens had greater color alterations after immersion but benefited from the polishing procedure, which reduced color differences below an acceptable threshold in comparison with the baseline. Stained specimens had lower color alterations after immersion, but the polishing protocol was detrimental as it whitened the ceramic by subsurface exposure. CONCLUSIONS: The coloring technique influences the surface characteristics of zirconia ceramic and also the color parameters after exposure to colored beverages and polishing.


Asunto(s)
Cerámica , Café , Color , Ensayo de Materiales , Propiedades de Superficie , Cerámica/química , Circonio/química , Porcelana Dental
16.
Front Immunol ; 14: 1199282, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37334384

RESUMEN

Background: Treatment with immune checkpoint inhibitors (ICI) can induce durable responses in cancer patients, but it is commonly associated with serious immune-related side effects. Both effects are suggested to be mediated by CD8+ T-cell infiltration. Whole body CD8+ T-cell distribution can be visualized by PET imaging of a 89Zr-labeled anti-humanCD8a minibody, currently investigated in a phase 2b trial. Main body: An adult patient diagnosed with metastatic melanoma developed ICI-related hypophysitis after two courses of combined immunotherapy (ipilimumab (3 mg/kg) and nivolumab (1 mg/kg) at 3 weeks interval). On a [89Zr]Zr-crefmirlimab berdoxam PET/CT scan, made 8 days before clinical symptoms occurred, increased CD8+ T-cell infiltration in the pituitary gland was detected. Simultaneously, tracer uptake in a cerebral metastasis was increased, indicating ICI-induced tumor infiltration by CD8+ T-cells. Conclusions: The observations in this case report underscore the role of CD8+ T-cell in non-tumor tissues in ICI-related toxicity. In addition, it illustrates a potential role for molecular imaging by PET/CT for investigation and monitoring of ICI-induced effects.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Melanoma , Adulto , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Radioisótopos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Circonio , Yin-Yang , Encéfalo/diagnóstico por imagen
17.
Int J Esthet Dent ; 18(2): 114-126, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37166767

RESUMEN

AIM: To evaluate the influence of resin cement on the color stability of lithium disilicate and zirconia restorations immersed in coffee after aging. MATERIALS AND METHODS: Eighty maxillary premolars were classified into eight groups (n = 10) based on restorative material type (lithium disilicate or zirconia), resin cement type (G-CEM LinkForce; GC Corporation or Panavia SA Cement Plus Automix; Kuraray Noritake Dental), and preheating temperature (25°C or 54°C). Following tooth preparation, each restoration was bonded to its corresponding substrate. Using a reflectance spectrophotometer, Commission Internationale de l'Éclairage (CIE) tristimulus values were detected and calculated (D65 standard illumination, 10-degree observer angle). All specimens were aged (240,000 load cycles followed by 10,000 thermal cycles), then immersed in coffee (18 h). Following that, the second measurements of the color coordinates were determined. The total color differences were measured, and the data were statistically analyzed (α = 0.05). RESULTS: The temperature had a significant effect on ΔL΄ (P < 0.001), ΔC΄ (P < 0.001), and ΔH΄ (P < 0.001). The lithium disilicate restorations were more color stable than the zirconia restorations. Also, there was a significant difference (P = 0.047) between the LinkForce (2.28 ± 0.48) and Panavia SA (2.15 ± 0.46) cement. The restorations cemented at a temperature of 54°C (1.76 ± 0.11) showed significant color differences (P < 0.001) compared with those cemented at a temperature of 25°C (2.67 ± 0.15). A three-way analysis of variance (ANOVA) test revealed that the interaction between the ceramic material, cement type, and temperature had no statistically significant effect (P = 0.611) on the color stability of the ceramic restorations. CONCLUSIONS: Cement type has a significant effect on the color stability of lithium disilicate and zirconia restorations. Cement at a temperature of up to 54°C enhances the color stability of lithium disilicate and zirconia restorations.


Asunto(s)
Café , Cementos de Resina , Humanos , Porcelana Dental , Cerámica , Circonio , Cementos Dentales , Cementos de Ionómero Vítreo , Ensayo de Materiales , Color , Propiedades de Superficie
18.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37047454

RESUMEN

Ten percent of patients undergoing total hip arthroplasty (THA) require revision surgery. One of the reasons for THA are wear particles released from the implants that can activate the immune defense and cause osteolysis and failure of the joint implant. The discrepancies between reports on toxicity and immunogenicity of the implant materials led us to this study in which we compared toxicity and immunogenicity of well-defined nanoparticles from Al2O3, zirconia-toughened alumina (ZTA), and cobalt chrome (CoCr), a human THP-1 macrophage cell line, human PBMCs, and therefrom-derived primary macrophages. None of the tested materials decreased the viability of THP-1 macrophages nor human primary macrophages at the 24 h time point, indicating that at concentrations from 0.05 to 50 µm3/cell the tested materials are non-toxic. Forty-eight hours of treatment of THP-1 macrophages with 5 µm3/cell of CoCr and Al2O3 caused 8.3-fold and 4.6-fold increases in TNF-α excretion, respectively, which was not observed for ZTA. The comparison between THP-1 macrophages and human primary macrophages revealed that THP-1 macrophages show higher activation of cytokine expression in the presence of CoCr and Al2O3 particles than primary macrophages. Our results indicate that ZTA is a non-toxic implant material with no immunogenic effects in vitro.


Asunto(s)
Prótesis de Cadera , Humanos , Prótesis de Cadera/efectos adversos , Ensayo de Materiales , Óxido de Aluminio , Circonio , Aleaciones de Cromo , Macrófagos , Cerámica
19.
Braz Dent J ; 34(1): 71-79, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36888847

RESUMEN

This study aimed to investigate the failure behavior of 3 mol.% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) prosthetic crowns air-abraded with aluminum oxide (AO) particles of different sizes. Ninety ceramic premolar crowns were produced with 3Y-TZP frameworks veneered with porcelain. Crowns were randomly divided into three groups, according to the size of the air abrasion AO particles (n = 30): (GC) untreated (control); (G53) 53 µm; (G125) 125 µm. Air abrasion was performed with 0.25 mpa pressure, 10-mm distance, for 10 s. Crowns were adhesively cemented to dentin analog abutments. Specimens were loaded in compression to failure, in 37oC distilled water, using a universal testing machine (n = 30). Fractographic analysis was performed using a stereomicroscope and SEM. The roughness of the crown's inner surface was evaluated using an optical profilometer (n = 10). Fracture load data were statistically analyzed with Weibull analysis and roughness data with Kruskal-Wallis (α = 0.05). GC had the lowest characteristic fracture load (L0), while G53 and G125 had higher and statistically similar L0 values. The Weibull modulus (m) was similar among groups. The failure modes observed were catastrophic failure and porcelain chipping. There were no differences between the roughness parameters for the experimental groups (p > 0.05). The size of the AO particles did not affect the fracture load and failure mode of 3Y-TZP crowns. Air abrasion with 53 µm and 125 µm particles resulted in a higher fracture load of ceramic crowns than the untreated group while maintaining their reliability and surface characteristics.


Asunto(s)
Abrasión Dental por Aire , Porcelana Dental , Óxido de Aluminio/química , Cerámica/química , Coronas , Porcelana Dental/química , Análisis del Estrés Dental , Ensayo de Materiales , Tamaño de la Partícula , Reproducibilidad de los Resultados , Propiedades de Superficie , Circonio/química
20.
J Adhes Dent ; 25(1): 79-86, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36939647

RESUMEN

PURPOSE: To evaluate the bonding receptiveness of zirconia treated with nano-silica surface infiltration and the bond strength of composite cement after aging. MATERIALS AND METHODS: Zirconia ceramic green bodies (Ceramill zolid, Amann Girbach) with dimensions of 10 x 10 x 4 mm were divided into three groups (n = 4): group C (control: no treatment after sintering), group S (sandblasted: 50-µm alumina airborne particle abrasion after sintering) and group N (nanosintered: infiltrated with nano-silica colloid, sintered, and then etched with hydrofluoric acid). Phase transformations were examined through X-ray diffraction (XRD). Composite resin (Filtek Z250, 3M Oral Care) was bonded to zirconia using the 10-MDP-containing composite cement Panavia F (Kuraray Noritake). The composite-cement/zirconia bond strength was immediately measured using the microtensile bond strength test (µTBS) as well as after three months of artificial aging in water (n = 20 microstick specimens/group). Failure mode patterns were examined using SEM. RESULTS: The specimens of groups C and S, as tested by XRD, exhibited almost full tetragonal phases, while a small extent of tetragonal-monoclinic phase transformation (t→m) was observed for group N. Group N achieved the highest bond strengths (41.5 ± 8.6 MPa), which was significantly higher than that measured for groups C and S (p < 0.05). There was a significant drop in µTBS after 90 days of water storage for groups C and S. SEM revealed a decrease in the percentage of cohesive failure in groups N and S after water storage. CONCLUSIONS: Infiltrating zirconia with nano-silica is a reliable method to establish a strong and stable bond to zirconia. The combination of surface infiltration with nano-silica and application of a phosphate monomer-containing composite cement can significantly improve the composite-cement/zirconia bond strength.


Asunto(s)
Recubrimiento Dental Adhesivo , Recubrimiento Dental Adhesivo/métodos , Dióxido de Silicio/química , Fosfatos , Propiedades de Superficie , Ensayo de Materiales , Cementos Dentales/química , Cementos de Resina/química , Circonio/química , Cementos de Ionómero Vítreo , Óxido de Aluminio/química , Agua/química , Análisis del Estrés Dental
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA